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Consider the functional 

where S is the boundary of a three dimensional domain V , occupied by a 
deformed body. Let V be parametrized by coordinates ~‘(1 = 1, 2, 3) with 
metric tensor giik*. l C is the body force vector and P* is the surface 
traction, referred to unit volume in V and to unit surface area in S , 
respectively; II is the displacement vekor; (I ik =. ki are the contri- 
variant components of the stress tensor, per &it arga in the deformed 
body; F = F (o- ik) is a function of the stress tensor; and p = p,(’ i&*) 
is a fudctio~ gf the strain tensor t ik* = c&i*. 

The variational theorem may be formulated as follows: among all the 
possible displacements II, compatible with the geometrical constraints, 
among all stress components u ik which satiify the statical conditions 
of equilibrium in the interio: and on the boundary, and among all strain 
components E i&*, the actual ones render stationary the functCma1 J. Thus. 

the fulfillment of all the conditions of the nonlinear theory of elas- 
ticity implies that 65 = 0, and, conversely, 65 = 0 implies the fulfill- 

went of all the relations of the nonlinear theory of elasticity. 

The functional J may be rewritten as follows 

(2) 

234 



The nonlinear theory of elasticity 235 

Q=Q*Jf$, 
7 - - 

P = P, 
a(,) 
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v- 

g_l, 

g 
g, = det-&ik*h g = det (gw). a(,) = det (a$). . . . (3) 

In Equation (2), S is the boundary of the volume V occupied by the 
bodg before deformation; a$' is the metric tensor on the surface S; and 
gig is the metric tensor in the domain V with coordinates I’, which is 
induced by the parametrization of the domain V . 

l 

The first variation of the functional J is 

where ri*, ri are the coordinate vectors in the spaces V and V reepec- 
tively (ri* = ri + 13p 6ri* =-6dp). 

l 

Since the variations of the stress do not violate the conditions of 
static equilibrium in the interior and on the boundary of the body, it 
follows that 

ai3 (aik rk* -&?j 

lfW +SQ=O, 6 (dkrk*ni) + 6P = 0 

Substituting these relations into (4) we have 

8J=S~~Q.BudV+ITP.6udS-SSS.‘k~~k*~+jSS~-~ 
S V V ae,,* I 6e,*dv - 

- sss u.V,b (8 rk*) dV - 
XV ss 

ub(cikv~Jds_ 
S 

(5) 

(6) 

where the ni are the covariant components of the inner normal vector to 
S and vi&.. ) denotes the covariant derivative with respect to the 
metric gig. 

By means of the following formula for integrating by parts 

{/[u.vi8 (oilirk*) dV = i\\vi [u.6 (aik rk*)) dV- I![ 6 (aikrk*).ViudV = 
iJ V 

zxz- 15 u.8 (alar/) nidS - $j&w(rk*&sik + bik6rk*) dV (7) 
s 
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one may rewrite 65 as follors 

6J = & Q.Bu a+ 1s p.8~ dS- ~~~ aik6Eik*dV + lis (,, - _i$} 6~;~ dV - 

V S V V rk 

- z f $ aiu.aku - aiu.rk* 
api 

6sikdV (8) 

Further, since 

one has 

apOrk* = +(‘k + a,u) =viuk +v&,v;71rua =vi*Uk* (9) 

8J = I$ Qdu cN+ 11 P,du AS- sli &eik*dv + @ p - _?t? 
aeih.* 

sEik* dv - 
S V V 

aF - SSS{ ~ - ~ (vi’k +vk’i 8UikdC’ 
V aOlk (10) 

or 

aJ = iil Q-Su fl+ I\ PhdS - Is\ aik6qk*dv + $55 (,,, - a$_} hik* u - 
V S V V 

SSS{ aF - - 
aoik 

- ;(vi*“k* -/-v/f* ui* -vi%,,*vk%*n) 
> 

&pu - (11) 
V 

In this last equation u = air’ = ui*r ‘, and V,*(...) is the covariant 
derivative with respect to the metric gi;*. 

Suppose that R is a potential for the stress tensor and that F is a 
potential for the strain tensor: 

aW 
Oik _ - *_aF 

- aeik* ’ ‘ik - aoik (14 

If the compatibility conditions for the displacements are satisfied, 
then the last integrals in (10) and (11) must vanish. The satisfaction 
of the elasticity relations carries along with it the vanishing of the 
last of the then remaining integrals in (10) and (11). The collection of 
the remaining integrals then gives nothing else but the variational 
equations of Lagrange, which are certainly satisfied once the equations 
of equilibrium and the boundary conditions are themselves fulfilled. 

Thus, 65 = 0 for the actual state. Conversely, from 65 = 0 follow all 
the relations of the nonlinear theory of elasticity. Indeed, since aoJk 
is independent of 6c ik* and of an, the equation 6J = 0 gives, making use 
of the last integral of (ll), 

2e. * =Vi*uk* +Vk*ui* -Vi*un*Vk*u*” 
tk (13) 
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Or 

2ei, =Viur +Vk”i +VJ~~~V& (14) 

From these equations it follows that [ll 

cik&. * _ C&l 
*k - CT+%** -. 

az” 

Hence 

BJ = {Vi(oikrk*) + Q} 6udV+ 

(15) 

8nd from this wuiationsl equation follow the equations of equilibrium 

ni (dk rk*) + Q = 0 

and the natural static boundary conditions 

#t r*kni + P = 0 

while from the geoaetricsl 

eqaations of elasticity 

conditions &I = 0 follow the corresponding 

aW @ = - 
f3eik* 
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