ON A VARIATIONAL THEOREM OF THE NONLINEAR THEORY OF ELASTICITY

(OB ODNOI VARIATSIONNOI TEOREME NELINEINOI TEORII UPRUGOSTI)

```
PMM Vol.26, No.1, 1962, PP. 169-171
```

\author{

1. G. teregolov
 (Kazan')
 (Received Janaary 18, 1961)
}

Consider the functional

$$
\begin{equation*}
J=\iiint_{V_{*}} \mathbf{Q}^{*} \cdot \mathbf{u} d V_{*}+\iint_{S_{*}} \mathbf{P}^{*} \cdot \mathbf{u} d S_{*}-\iiint_{V_{*}}\left\{W_{*}+F_{*}+\frac{1}{2} \sigma_{*}^{i k} \partial_{i} \mathbf{u} \cdot \partial_{k} \mathbf{u}\right\} d V_{*} \tag{1}
\end{equation*}
$$

Where S is the boundary of a three dimensional domain V, occupied by a deformed body. Let V be parametrized by coordinates $x^{i}\left({ }^{*} i=1,2,3\right)$ with metric tensor $g_{i k^{*}}$. " Q^{*} is the body force vector and P^{*} is the surface traction, referred to unit volume in V and to unit surface area in S_{*}, respectively; u is the displacement vector: $\sigma^{i k}=\sigma{ }^{k i}$ are the contravariant components of the stress tensor, per unit area in the deformed body: $F_{\text {. }}=F_{\text {(}}\left(\sigma^{i k}\right)$ is a function of the stress tensor; and $\Pi=\Pi_{*}\left(\epsilon_{i k}\right)$ is a function of the strain tensor $\epsilon_{i k^{*}}=\epsilon_{k i}{ }^{*}$.

The variational theorem may be formulated as follows: among all the possible displacements u, compatible with the geometrical constraints, among all stress components $\sigma^{i k}$ which satisify the statical conditions of equilibrium in the interior and on the boundary, and among all strain components $\epsilon_{i k^{*}}$, the actual ones render stationary the functional J. Thus, the fulfillment of all the conditions of the nonlinear theory of elasticity implies that $\delta J=0$, and, conversely, $\delta J=0$ implies the fulfillment of all the relations of the nonlinear theory of elasticity.

The functional J nay be rowritten as follows
where

$$
\begin{equation*}
J=\iiint_{V} \mathbf{Q} \cdot \mathbf{u} d V+\iint_{S} \mathbf{P} \cdot \mathbf{u} d S-\iint_{V}\left\{W+F+\frac{1}{2} \sigma^{i k} \partial_{\boldsymbol{i}} \mathbf{u} \cdot \partial_{k} \mathbf{u}\right\} d V \tag{2}
\end{equation*}
$$

$$
\begin{align*}
\mathbf{Q} & =\mathbf{Q}_{*} \sqrt{\frac{g_{*}}{g}}, \quad \mathbf{P}=\mathbf{P}_{*} \sqrt{\frac{a_{(s)}{ }^{*}}{a_{(s)}}}, \quad W=W_{*} \sqrt{\frac{g_{*}}{g}}, \quad F=F_{*} \sqrt{\frac{g_{*}}{g}}, \\
\sigma^{i k} & =\sigma_{*}^{i k} \sqrt{\frac{g_{*}}{g}}, \quad g_{*}=\operatorname{det}\left(g_{i k}{ }^{*}\right), \quad g=\operatorname{det}\left(g_{i k}\right), \quad a_{(s)}=\operatorname{det}\left(a_{a \beta}^{(s)}\right), \ldots \tag{3}
\end{align*}
$$

In Equation (2), S is the boundary of the volume V occupied by the body before deformation; $a_{\alpha \beta}^{(s)}$ is the metric tensor on the surface S; and $g_{i k}$ is the metric tensor in the domain V with coordinates x^{i}, which is induced by the parametrization of the domain V.

The first variation of the functional J is

$$
\begin{align*}
& \delta J=\iiint_{V} \mathbf{Q} \cdot \delta \mathbf{u} d V+\iint_{S} \mathbf{P} \cdot \delta \mathbf{u} d S-\iiint_{V} \sigma^{i k} \delta \varepsilon_{i k}{ }^{*} d V+\iiint_{V}\left\{\sigma^{i k}-\frac{\partial W}{\partial \varepsilon_{i k}{ }^{*}}\right\} \delta \varepsilon_{i k}{ }^{*} d V+ \\
& +\iiint_{V} \mathbf{u} \cdot \delta \mathbf{Q} d V+\iint_{S} \mathbf{u} \cdot \delta \mathbf{P} d S-\iiint_{V}\left\{\left(\frac{\partial F}{\partial \sigma^{i k}}+\frac{1}{2} \partial_{i} \mathbf{u} \cdot \partial_{k} \mathbf{u}\right) \delta s^{i k}+\sigma^{i k} \partial_{i} \mathbf{u} \cdot \delta \mathbf{r}_{k}{ }^{*}\right\} d V \tag{4}
\end{align*}
$$

where r_{i}, r_{i} are the coordinate vectors in the spaces $V_{\text {* }}$ and V respectively $\quad\left(r_{i}{ }^{*}=r_{i}+\partial_{i} \mathbf{n} \quad \delta r_{i}{ }^{*}=\delta \partial_{i}{ }^{n}\right)$.

Since the variations of the stress do not violate the conditions of static equilibrium in the interior and on the boundary of the body, it follows that

$$
\begin{equation*}
\frac{\partial \delta\left(\sigma^{i k} \mathbf{r}_{k}^{*} \cdot \sqrt{ } \cdot \bar{g}\right)}{\sqrt{g} \partial x^{i}}+\delta \mathbf{Q}=0, \quad \delta\left(\sigma^{i k} \mathbf{r}_{k}{ }^{*} n_{i}\right)+\delta \mathbf{P}=0 \tag{5}
\end{equation*}
$$

Substituting these relations into (4) we have

$$
\begin{align*}
\delta J=\iiint_{V} \mathbf{Q} \cdot \delta \mathbf{u} d V & +\iint_{S} \mathbf{P} \cdot \delta \mathbf{u} d S-\iiint_{V} \sigma^{i k} \delta \boldsymbol{\varepsilon}_{i k}{ }^{*} d V+\iiint_{V}\left\{\sigma^{i k}-\frac{\partial W}{\partial \boldsymbol{e}_{i k}{ }^{*}}\right\} \delta \boldsymbol{\varepsilon}_{i k}{ }^{*} d V- \\
& -\iiint_{V} \mathbf{u} \cdot \nabla_{i} \delta\left(\sigma^{i k} \mathbf{r}_{k}{ }^{*}\right) d V-\iint_{S} \mathbf{u} \delta\left(\sigma^{i k} \mathbf{r}_{k}{ }^{*} n_{i}\right) d S- \\
& -\iiint_{V}\left\{\left(\frac{\partial F}{\partial \sigma^{i k}}+\frac{1}{2} \partial_{i} \mathbf{u} \cdot \partial_{k} \mathbf{u}\right) \delta \sigma^{i k}+\sigma^{i k} \partial_{i} \mathbf{u} \cdot \delta \mathbf{r}_{k}{ }^{*}\right\} d V \tag{6}
\end{align*}
$$

where the n_{i} are the covariant components of the inner normal vector to S and $\nabla_{i}(\ldots)$ denotes the covariant derivative $\begin{aligned} & \text { with respect to the }\end{aligned}$ metric $g_{i k}$.

By means of the folloring formula for integrating by parts

$$
\begin{gather*}
\iiint_{V} \mathbf{u} \cdot \nabla_{i} \delta\left(\sigma^{i k} \mathbf{r}_{k}{ }^{*}\right) d V=\iiint_{V} \nabla_{i}\left[\mathbf{u} \cdot \delta\left(\sigma^{i k} \mathbf{r}_{k}{ }^{*}\right)\right] d V-\iiint_{V} \delta\left(\sigma^{i k_{\mathbf{r}_{k}}}{ }^{*}\right) \cdot \nabla_{i} \mathbf{u} d V= \\
=-\iint_{S} \mathbf{u} \cdot \delta\left(\sigma^{i k} \mathbf{r}_{k}{ }^{*}\right) n_{i} d S-\iiint_{V} \nabla_{i} \mathbf{u} \cdot\left(\mathbf{r}_{k}{ }^{*} \delta \sigma^{i k}+\sigma^{i k} \boldsymbol{\delta}_{\mathbf{r}_{k}}{ }^{*}\right) d V \tag{7}
\end{gather*}
$$

one may rewrite δJ as follows

$$
\begin{gather*}
\delta J=\iiint_{V} \mathbf{Q} \cdot \delta \mathbf{u} d V+\iint_{S} \mathbf{P} \cdot \delta \mathbf{u} d S-\iint_{V} \sigma^{i k} \delta_{\varepsilon_{i k}}{ }^{*} d V+\iiint_{V}\left\{\sigma^{i k}-\frac{\partial W}{\partial \varepsilon_{i k}{ }^{*}}\right\} \delta \varepsilon_{i k}^{*} d V \\
-\iint_{V}\left\{\frac{\partial F}{\partial s^{i k}}+\frac{1}{2} \partial_{i} \mathbf{u} \cdot \partial_{k^{\prime}} \mathbf{u}-\partial_{i} \mathbf{u} \cdot \mathbf{r}_{k}{ }^{*}\right\} \delta s^{i k} d V \tag{8}
\end{gather*}
$$

Further, since

$$
\begin{equation*}
\partial_{i} \mathbf{u} \cdot \mathbf{r}_{k}{ }^{*}=\partial_{i} \mathbf{u} \cdot\left(\mathbf{r}_{k}+\partial_{k} \mathbf{u}\right)=\nabla_{i} u_{k}+\nabla_{i} u_{n} \nabla_{k} u^{n}=\nabla_{i}^{*} u_{k}^{*} \tag{9}
\end{equation*}
$$

one has

$$
\begin{align*}
& \delta J=\iiint_{V} \mathbf{Q} \cdot \delta \mathbf{u} d V+\iint_{S} \mathbf{P} \cdot \delta \mathbf{u} d S-\iiint_{V} \sigma^{i k} \delta \varepsilon_{i k}{ }^{*} d V+\iiint_{V}\left\{\sigma^{i k}-\frac{\partial W}{\partial \varepsilon_{i k}{ }^{*}}\right\} \delta \varepsilon_{i k}{ }^{*} d V- \\
&-\iiint_{V}\left\{\frac{\partial F}{\partial \sigma^{i k}}-\frac{1}{2}\left(\nabla_{i} u_{k}+\nabla_{k} u_{i}+\nabla_{i} u_{n} \nabla_{k} u^{n}\right)\right\} \delta \sigma^{i k} d V \tag{10}
\end{align*}
$$

or

$$
\begin{align*}
\delta J= & \iiint_{V} \mathbf{Q} \cdot \delta u d V+\iint_{S} \mathbf{P} \delta \mathbf{u} d S-\iiint_{V} \sigma^{i k} \delta \varepsilon_{i k}{ }^{*} d V+\iiint_{V}\left\{\sigma^{i k}-\frac{\partial W}{\partial \varepsilon_{i k}{ }^{*}}\right\} \delta e_{i k}{ }^{*} d V- \\
& -\iint_{V}\left\{\frac{\partial F}{\partial \sigma^{i k}}-\frac{1}{2}\left(\nabla_{i}{ }^{*} u_{k}{ }^{*}+\nabla_{k}{ }^{*} u_{i}{ }^{*}-\nabla_{i}{ }^{*} u_{n}{ }^{*} \nabla_{k}{ }^{*} u_{*}{ }^{n}\right)\right\} \delta \sigma^{i k} d V- \tag{11}
\end{align*}
$$

In this last equation $u=n_{i} r^{i}=u_{i}{ }^{*} r^{i}{ }^{i}$, and $\nabla_{i}{ }^{*}(\ldots)$ is the covariant derivative with respect to the metric $\mathrm{g}_{\mathrm{ik}}{ }^{*}$.

Suppose that is a potential for the stress tensor and that F is a potential for the strain tensor:

$$
\begin{equation*}
\sigma^{i k}=\frac{\partial W}{\partial \mathrm{e}_{i{ }^{*}}{ }^{*}}, \quad \varepsilon_{i k}{ }^{*}=\frac{\partial F}{\partial \sigma^{i k}} \tag{12}
\end{equation*}
$$

If the compatibility conditions for the displacements are satisfied, then the last integrals in (10) and (11) mast vanish. The satisfaction of the elasticity relations carries along with it the vanishing of the last of the then reasining integrals in (10) and (11). The collection of the remaining integrals then gives nothing else but the variational equations of Lagrange, which are certainly satisfied once the equations of equilibrinm and the boundary conditions are themselves falfilled.

Thus, $\delta J=0$ for the actual state. Conversely, from $\delta J=0$ follow all the relations of the nonlinear theory of elasticity. Indeed, since $\delta \sigma^{i k}$ is independent of $\delta \epsilon_{i k^{*}}$ and of $\delta \mathrm{u}$, the equation $\delta J=0$ gives, making use of the last integral of (11),

$$
\begin{equation*}
2 \varepsilon_{i k}^{*}=\nabla_{i}^{*} u_{k}^{*}+\nabla_{k}^{*} u_{i}^{*}-\nabla_{i}^{*} u_{n}^{*} \nabla_{k}^{*} u^{* n} \tag{13}
\end{equation*}
$$

or

$$
\begin{equation*}
2 \varepsilon_{i k}=\nabla_{i} u_{k}+\nabla_{k} u_{i}+\nabla_{i} u_{n} \nabla_{k} u_{n}^{*} \tag{14}
\end{equation*}
$$

From these equations it follows that [1]

$$
\sigma^{i k} \delta \mathrm{e}_{i k^{*}}^{*}=\sigma^{i k} \mathbf{r}_{i} * \frac{\partial \delta \mathbf{u}}{\partial x^{k}}
$$

Hence

$$
\begin{gather*}
\delta J=\iiint_{V}\left\{\nabla_{i}\left(\sigma^{i k_{\mathbf{r}_{k}}}{ }^{*}\right)+\mathbf{Q}\right\} \delta \mathbf{u} d V+\iint_{S}\left\{\sigma^{i k_{k}}{ }^{*} n_{i}+\mathbf{P}\right\} \delta \mathbf{u} d S+ \\
+\iiint_{U}\left\{\sigma^{i k}-\frac{\partial W}{\partial \varepsilon_{i k}{ }^{*}}\right\} \delta \mathbf{\varepsilon}_{i k}{ }^{*} d V=0 \tag{15}
\end{gather*}
$$

and from this variational equation follow the equations of equilibriue

$$
\triangle_{i}\left(\sigma^{i k} \mathbf{r}_{k}^{*}\right)+\mathbf{Q}=0
$$

and the natural static boundary conditions

$$
\sigma^{i k} \mathbf{r}^{*} k n_{i}+\mathbf{P}=0
$$

While from the geometrical conditions $\delta \mathbf{u}=0$ follow the corresponding equations of elasticity

$$
\sigma^{i k}=\frac{\partial W}{\partial \varepsilon_{i k}{ }^{*}}
$$

BIBLIOGRAPHY

1. Galimov, K.Z., K teorif konechnykh deformatsii (on the theory of finite deformations). Uch. Zap. Kaz. aniversiteta, Vol. 109, No. 1, 1949.
