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Consider the functional

= SSS Q*-udV, + SS P*.udS, —SSS {W. + F,+ %cj" aiu-aku} v, (1)
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where S. is the boundary of a three dimensional donain‘lz, occupied by a
deformed body. Let V; be parametrized by coordinmates x‘(i = 1, 2, 3) with
metric temsor gik" Q* is the body force vector and P* is the surface
traction, referred to unit volume in V and to unit surface area in S X
respectively; u is the displacement vector o ik _ o ki are the contra-
variant conponents of the stress tensor, per unit area in the deformed
body; i; = FL(a ) is a function of the stress tensor; and ¥ = l;(e k
is a function of the strain tensor ‘ik = fki .

The variational theorem may be formulated as follows: among all the
possible displacements u, compatible with the geometrical comstraints,
among all stress components a_‘k which satisfy the statical conditions
of equilibrium in the interior and on the boundary, and among all strain
components ‘ik" the actual ones render stationary the functionmal J. Thus,
the fulfillment of all the conditions of the nonlinear theory of elas-
ticity implies that 8J = 0, and, conversely, 8J = 0 implies the fulfill-
ment of all the relations of the nonlinear theory of elasticity.

The functional J may be rewritten as follows

=S“Q.udV+SSSP.udS—S‘S,S{W+F+%cik6iu-6ku}dV @)

where v
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ok — g % v ge=det{gy*), g=det(gy), oy, =det@®),... (3)

In Equation (2), S is the boundary of the volume V occupied by the
body before deformation; aiE) is the metric tensor on the sqrface S; and

Bik is the metric temsor in the domain V with coordinates x°, which is
induced by the parametrization of the domain V..

The first variation of the functionmal J is

o7 = S‘S’S Q-dudv+ SSS P.oudS— SS}S s*e,,* aV + S&S {c“‘ — azz“: } Sy dV +

+ mu.aq v+ Sgu.ap ds—m{(a‘z_ii —|—%6iu.6ku> Gsik_{__cikaiu.brk*} &
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where ri‘, r. are the coordinate vectors in the spaces V; and V respec-
tively (r;*=r;+ aiu Sri‘ =-88in).

Since the variations of the stress do not violate the conditions of

static equilibrium in the interior and on the boundary of the body, it
follows that

88 (6 r,* V.g)
__VE—;?_— +8Q=0, 8(c*r*n)+08P=0 ®)

Substituting these relations into (4) we have

87 = Sig Q.oudv+ SSS P.budS— Sig o e, ® dV -+ S‘SS {c"‘ - a;’:: } Be, dV —

= {{u-78 @ n v — [fusstagnpas—
S
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- S‘S/S {(% + —;- 3iu'8ku) stk 4 otk aiu-brk*} dv (6)

where the n; are the covariant components of the inmer normal vector to

S and Vi(...) denotes the covariant derivative with respect to the
metric 8ik

By means of the following formula for integrating by parts
Sggu-vié (cs“"rk*) dV = S“Vi [u-8 (sik r.*)dv — SSS 8 (cikrk*)-viudV =
Vv \4 v
- S u-8 (otr,*) n,dS — KSSviu-(rk* 83tk + giker, *) av )
S ¥V
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one may rewrite 8J as follows

8J = SS}S Q-buav4 SSS P.u dS— 555 otkse,, *dV 1 SVSS {ci" — a‘zl“’ } dep AV —

_SSS{jfh +%0u du —du-r, }és’de (8)
v 5
Purther, since

du-r,* = du-(r, + d,u) =V +Vu, V" =V, u,* 9)

one has

& = S§,S Q-dudV+ SSS P.dudS— SS/S o™8e,, *dV + SS}S {ci" _ a‘:f:' } By dV —
- S‘S,S B — 3 (o +, VT | sata (10)
or

87 = {§{ Q-6uav+ SSS Pduds — Sg}g 6™ ey *dV + S§’S {c“‘ —L } Seyc* dV —

v Oeyy
_ aF . 1 *,, * e, * *, % £, n ik
m 'E(vl u* Vi, —V Vi )} 86t dV — (11)
vV
In this last equation u = u; r = u 'r i, and Vi‘(...) is the covarijant

derivative with respect to the metric g‘k

Suppose that ¥ is a potential for the stress tensor and that F is a
potential for the strain tensor:

: oW oF
ot = Frmal gt = Py (12)

If the compatibility conditions for the displacements are satisfied,
then the last integrals in (10) and (11) must vanish, The satisfaction
of the elasticity relations carries along with it the vanishing of the
1ast of the then remaining integrals in (10) and (11). The collection of
the remaining integrals then gives nothing else but the variational
equations of Lagrange, which are certainly satisfied once the equations
of equilibrium and the boundary conditions are themselves fulfilled.

Thus, 6J = 0 for the actual state. Conversely, from 8J = 0 follow gll
the relations of the nonlinear theory of elasticity. Indeed, since 8o‘k
is independent of a‘ik' and of Su, the equation 8J = 0 gives, making use
of the last integral of (11),

2eh* =V Au* YV u — VMU Ve (13)
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or
28y =V %y + Vi V8, Viuy (14)

From these equations it follows that (1]

adu
az*’

ik * __ Sk, x
s 8yt =0o"'r

Hence

87 = {{ vis™ ) + @ duav \\ e, -+ Py u as +
v S

+ S§S {sik — a?:’ } deye* dV =0 (15)

and from this variational equation follow the equations of equilibrium
D (¥ n*)+Q=0
and the natural static boundary conditions

otk r*kn, 4P =0

while from the geometrical conditions Su = 0 follow the corresponding
equations of elasticity
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